Число бога, числа фибоначчи, золотое сечение. Последовательность фибоначчи и принципы золотого сечения Численная последовательность фибоначчи

Последовательность Фибоначчи , известная всем по фильму "Код Да Винчи" - ряд цифр, описанный в виде загадки Итальянским математиком Леонардо Пизанским, более известным под прозвищем Фибоначчи, в XIII веке. Вкратце суть загадки:

Кто-то поместил пару кроликов в некоем замкнутом пространстве, чтобы узнать, сколько пар кроликов родится при этом в течении года, если природа кроликов такова, что каждый месяц пара кроликов производит на свет другую пару, а способность к производству потомства у них появляется по достижению двухмесячного возраста.


В итоге получается такой ряд цифр: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 , где через запятую показано количество пар кроликов в каждом из двенадцати месяцев. Его можно продолжать бесконечно долго. Его суть в том, что каждое следующее число является суммой двух предыдущих.

У этого ряда есть несколько математических особенностей, которых обязательно нужно коснуться. Он асимптотически (приближаясь все медленнее и медленнее) стремится к некоторому постоянному соотношению. Однако, это соотношение иррационально, то есть представляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифр в дробной части. Его невозможно выразить точно.

Так отношение какого-либо члена ряда к предшествующему ему колеблется около числа 1,618 , через pаз то превосходя, то не достигая его. Отношение к следующему аналогично приближается к числу 0,618 , что обратно пропорционально 1,618 . Если мы будем делить элементы через одно, то получим числа 2,618 и 0,382 , которые так же являются обратно пропорциональными. Это так называемые коэффициенты Фибоначчи.

К чему всё это? Так мы приближаемся к одному из самых загадочных явлений природы. Смекалистый Леонардо по сути не открыл ничего нового, он просто напомнил миру о таком явлении, как Золотое Сечение , которое не уступает по значимости теореме Пифагора.

Все окружающие нас предметы мы различаем в том числе и по форме. Какие-то нам нравятся больше, какие-то меньше, некоторые вовсе отталкивают взгляд. Иногда интерес может быть продиктован жизненной ситуацией, а порой красотой наблюдаемого объекта. Симметричная и пропорциональная форма, способствует наилучшему зрительному восприятию и вызывает ощущение красоты и гармонии. Целостный образ всегда состоит из частей разного размера, находящихся в определённом соотношении друг с другом и целым. Золотое сечение - высшее проявление совершенства целого и его частей в науке, искусстве и природе.

Если на простом примере, то Золотое Сечение - это деление отрезка на две части в таком соотношении, при котором большая часть относится к меньшей, как их сумма (весь отрезок) к большей.


Если мы примем весь отрезок c за 1 , то отрезок a будет равен 0,618 , отрезок b - 0,382 , только так будет соблюдено условие Золотого Сечения (0,618/0,382=1,618 ; 1/0,618=1,618 ) . Отношение c к a равно 1,618 , а с к b 2,618 . Это всё те же, уже знакомые нам, коэффициенты Фибоначчи.

Разумеется есть золотой прямоугольник, золотой треугольник и даже золотой кубоид. Пропорции человеческого тела во многих соотношениях близки к Золотому Сечению.

Изображение: marcus-frings.de

Но самое интересное начинается, когда мы объединим полученные знания. На рисунке наглядно показана связь между последовательностью Фибоначчи и Золотым сечением. Мы начинаем с двух квадратов первого размера. Сверху добавляем квадрат второго размера. Подрисовываем рядом квадрат со стороной, равной сумме сторон двух предыдущих, третьего размера. По аналогии появляется квадрат пятого размера. И так далее пока не надоест, главное, чтобы длина стороны каждого следующего квадрата равнялась сумме длин сторон двух предыдущих. Мы видим серию прямоугольников, длины сторон, которых являются числами Фибоначчи, и, как не странно, они называются прямоугольниками Фибоначчи.

Если мы проведём плавную линий через углы наших квадратов, то получим ни что иное, как спираль Архимеда, увеличение шага которой всегда равномерно.


Ничего не напоминает?


Фото: ethanhein on Flickr

И не только в раковине моллюска можно найти спирали Архимеда, а во многих цветах и растениях, просто они не такие явные.

Алое многолистный:


Фото: brewbooks on Flickr


Фото: beart.org.uk
Фото: esdrascalderan on Flickr
Фото: mandj98 on Flickr

И тут самое время вспомнить о Золотом Сечении! Ни одни ли из самых прекрасных и гармоничных творений природы изображены на этих фотографиях? И это далеко не все. Присмотревшись, можно найти похожие закономерности во многих формах.

Конечно заявление, что все эти явление построены на последовательности Фибоначчи звучит слишком громко, но тенденция на лицо. Да и к тому же сама она далека от совершенства, как и всё в этом мире.

Есть предположение, что ряд Фибоначчи - это попытка природы адаптироваться к более фундаментальной и совершенной золотосечённой логарифмической последовательности, которая практически такая же, только начинается из ниоткуда и уходит в никуда. Природе же обязательно нужно какое-то целое начало, от которого можно оттолкнуться, она не может создать что-то из ничего. Отношения первых членов последовательности Фибоначчи далеки от Золотого Сечения. Но чем дальше мы продвигаемся по ней, тем больше эти отклонения сглаживаются. Для определения любого ряда достаточно знать три его члена, идущие друг за другом. Но только не для золотой последовательности, ей достаточно двух, она является геометрической и арифметической прогрессией одновременно. Можно подумать, будто она основа для всех остальных последовательностей.

Каждый член золотой логарифмической последовательности является степенью Золотой Пропорции (z ). Часть ряда выглядит примерно так: ... z -5 ; z -4 ; z -3 ; z -2 ; z -1 ; z 0 ; z 1 ; z 2 ; z 3 ; z 4 ; z 5 ... Если мы округлим значение Золотой пропорции до трёх знаков, то получим z=1,618 , тогда ряд выглядит так: ... 0,090 0,146; 0,236; 0,382; 0,618; 1; 1,618; 2,618; 4,236; 6,854; 11,090 ... Каждый следующий член может быть получен не только умножением предыдущего на 1,618 , но и сложением двух предыдущих. Таким образом экспоненциальный рост обеспечивается путем простого сложения двух соседних элементов. Это ряд без начала и конца, и именно на него пытается быть похожей последовательность Фибоначчи. Имея вполне определённое начало, она стремится к идеалу, никогда его не достигая. Такова жизнь.

И всё-таки, в связи со всем увиденным и прочитанным, возникают вполне закономерные вопросы:
От куда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Было ли когда-то всё так, как он хотел? И если да, то почему сбилось? Мутации? Свободный выбор? Что же будет дальше? Спираль скручивается или раскручивается?

Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появится ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восемью, потом тринадцатью, 21, 34, 55...

Источники: ; ; ;

Итальянский математик Леонардо Фибоначчи жил в 13 столетии и одним из первых в Европе стал использовать арабские (индийские) цифры. Он придумал несколько искусственную задачу о кроликах, которых выращивают на ферме, причем все они считаются самками, самцы игнорируются. Кролики начинают размножаться после того, как им исполняется два месяца, а потом каждый месяц рожают по кролику. Кролики никогда не умирают.

Нужно определить, сколько кроликов будет на ферме через n месяцев, если в начальный момент времени был только один новорожденный кролик.

Очевидно, что фермер имеет одного кролика в первый месяц и одного кролика – во второй месяц. На третий месяц будет уже два кролика, на четвертый – три и т.д. Обозначим количество кроликов в n месяце как . Таким образом,
,
,
,
,
, …

Можно построить алгоритм, позволяющий найти при любомn .

Согласно условию задачи общее количество кроликов
вn +1 месяце раскладывается на три составляющие:

    одномесячные кролики, не способные к размножению, в количестве

;


Таким образом, получим

. (8.1)

Формула (8.1) позволяет вычислить ряд чисел: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, …

Числа в данной последовательности называются числами Фибоначчи .

Если принять
и
, то с помощью формулы (8.1) можно определить все остальные числа Фибоначчи. Формула (8.1) называется рекуррентной формулой (recurrence – «возвращение» на латыни).

Пример 8.1. Предположим, что имеется лестница в n ступенек. Мы можем подниматься по ней с шагом в одну ступеньку, либо – с шагом в две ступеньки. Сколько существует комбинаций различных способов подъема?

Если n = 1, имеется только один вариант решения задачи. Для n = 2 существует 2 варианта: два единичных шага либо один двойной. Для n = 3 существует 3 варианта: три единичных шага, либо один единичный и один двойной, либо один двойной и один единичный.

В следующем случае n = 4, имеем 5 возможностей (1+1+1+1, 2+1+1, 1+2+1, 1+1+2, 2+2).

Для того чтобы ответить на заданный вопрос при произвольном n , обозначим количество вариантов как , и попробуем определить
по известными
. Если мы стартуем с единичного шага, то имеем комбинаций для оставшихсяn ступенек. Если стартуем с двойного шага, то имеем
комбинаций для оставшихсяn –1 ступенек. Общее количество вариантов для n +1 ступенек равно

. (8.2)

Полученная формула как близнец напоминает формулу (8.1). Тем не менее, это не позволяет отождествлять количество комбинаций с числами Фибоначчи. Мы видим, например, что
, но
. Однако имеет место следующая зависимость:

.

Это справедливо для n = 1, 2, и также справедливо для каждого n . Числа Фибоначчи и количество комбинаций вычисляются по одной и той же формуле, однако начальные значения
,
и
,
у них различаются.

Пример 8.2. Этотпример имеет практическое значение для задач помехоустойчивого кодирования. Найдем число всех двоичных слов длины n , не содержащих несколько нулей подряд. Обозначим это число через . Очевидно,
, а слова длины 2, удовлетворяющие нашему ограничению, таковы: 10, 01, 11, т.е.
. Пусть
– такое слово изn символов. Если символ
, то
может быть произвольным (
)-буквенным словом, не содержащим несколько нулей подряд. Значит, число слов с единицей на конце равно
.

Если же символ
, то обязательно
, а первые
символа
могут быть произвольными с учетом рассматриваемых ограничений. Следовательно, имеется
слов длины n с нулем на конце. Таким образом, общее число интересующих нас слов равно

.

С учетом того, что
и
, полученная последовательность чисел – это числа Фибоначчи.

Пример 8.3. В примере 7.6 мы нашли, что число двоичных слов постоянного веса t (и длиной k ) равно . Теперь найдем число двоичных слов постоянного весаt , не содержащих несколько нулей подряд.

Рассуждать можно так. Пусть
число нулей в рассматриваемых словах. В любом слове имеется
промежутков между ближайшими нулями, в каждом из которых находится одна или несколько единиц. Предполагается, что
. В противном случае нет ни одного слова без рядом стоящих нулей.

Если из каждого промежутка удалить ровно по одной единице, то получим слово длины
, содержащеенулей. Любое такое слово может быть получено указанным образом из некоторого (и притом только одного)k -буквенного слова, содержащего нулей, никакие два из которых не стоят рядом. Значит, искомое число совпадает с числом всех слов длины
, содержащих ровнонулей, т.е. равно
.

Пример 8.4. Докажем,что сумма
равна числам Фибоначчи для любого целого. Символ
обозначаетнаименьшее целое число, большее или равное . Например, если
, то
; а если
, то
ceil («потолок»). Также встречается символ
, который обозначаетнаибольшее целое число, меньшее или равное . По-английски эту операцию называютfloor («пол»).

Если
, то
. Если
, то
. Если
, то
.

Таким образом, для рассмотренных случаев сумма действительно равна числам Фибоначчи. Теперь приведем доказательство для общего случая. Поскольку числа Фибоначчи можно получить с помощью рекуррентного уравнения (8.1), то должно выполняться равенство:

.

И оно действительно выполняется:

Здесь мы использовали полученную ранее формулу (4.4):
.

      Сумма чисел Фибоначчи

Определим сумму первых n чисел Фибоначчи.

0+1+1+2+3+5 = 12,

0+1+1+2+3+5+8 = 20,

0+1+1+2+3+5+8+13 = 33.

Легко заметить, что прибавлением к правой части каждого уравнения единицы мы снова получаем число Фибоначчи. Общая формула для определения суммы первых n чисел Фибоначчи имеет вид:

Докажем это, используя метод математической индукции. Для этого запишем:

Эта сумма должна быть равна
.

Сократив левую и правую часть уравнения на –1, получим уравнение (6.1).

      Формула для чисел Фибоначчи

Теорема 8.1. Числа Фибоначчи можно рассчитать по формуле

.

Доказательство . Убедимся в справедливости этой формулы для n = 0, 1, а затем докажем справедливость данной формулы для произвольного n по индукции. Вычислим отношение двух ближайших чисел Фибоначчи:

Мы видим, что отношение этих чисел колеблется около значения 1.618 (если игнорировать несколько первых значений). Этим свойством числа Фибоначчи напоминают члены геометрической прогрессии. Примем
, (
). Тогда выражение

преобразуется в

которое после упрощений выглядит так

.

Мы получили квадратное уравнение, корни которого равны:

Теперь можем записать:

(где c является константой). Оба члена и не дают чисел Фибоначчи, например
, в то время как
. Однако разность
удовлетворяет рекуррентному уравнению:

Для n =0 эта разность дает, то есть:
. Однако при n =1 мы имеем
. Чтобы получить
, необходимо принять:
.

Теперь мы имеем две последовательности: и
, которые начинаются с одинаковых двух чисел и удовлетворяют одной и той же рекуррентной формуле. Они должны быть равны:
. Теорема доказана.

При возрастании n член становится очень большим, в то время как
, и роль членав разности сокращается. Поэтому при больших n приближенно можем записать

.

Мы игнорируем 1/2 (поскольку числа Фибоначчи возрастают до бесконечности при росте n до бесконечности).

Отношение
называется золотым сечением , его используют за пределами математики (например, в скульптуре и архитектуре). Золотым сечением является отношение между диагональю и стороной правильного пятиугольника (рис. 8.1).

Рис. 8.1. Правильный пятиугольник и его диагонали

Для обозначения золотого сечения принято использовать букву
в честь известного афинского скульптора Фидия.

      Простые числа

Все натуральные числа, большие единицы, распадаются на два класса. К первому относятся числа, имеющие ровно два натуральных делителя, единицу и самого себя, ко второму – все остальные. Числа первого класса называют простыми , а второго – составными . Простые числа в пределах первых трех десятков: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, …

Свойства простых чисел и их связь со всеми натуральными числами изучалась Евклидом (3 век до нашей эры). Если выписывать простые числа подряд, то можно заметить, что относительная плотность их убывает. На первый десяток их приходится 4, т. е. 40%, на сотню – 25, т.е. 25%, на тысячу – 168, т.е. меньше 17%, на миллион – 78498, т.е. меньше 8%, и т.д.. Тем не менее, их общее число бесконечно.

Среди простых чисел попадаются пары таких, разность между которыми равна двум (так называемые простые близнецы ), однако конечность или бесконечность таких пар не доказана.

Евклид считал очевидным, что с помощью умножения только простых чисел можно получить все натуральные числа, причем каждое натуральное число представимо в виде произведения простых чисел единственным образом (с точностью до порядка множителей). Таким образом, простые числа образуют мультипликативный базис натурального ряда.

Изучение распределения простых чисел привело к созданию алгоритма, позволяющего получать таблицы простых чисел. Таким алгоритмом является решето Эратосфена (3 век до нашей эры). Этот метод заключается в отсеивании (например, путем зачеркивания) тех целых чисел заданной последовательности
, которые делятся хотя бы на одно из простых чисел, меньших
.

Теорема 8 . 2 . (теорема Евклида). Число простых чисел бесконечно .

Доказательство . Теорему Евклида о бесконечности числа простых чисел докажем способом, предложенным Леонардом Эйлером (1707–1783). Эйлер рассмотрел произведение по всем простым числам p :

при
. Это произведение сходится, и если его раскрыть, то в силу однозначности разложения натуральных чисел на простые сомножители получается, что оно равняется сумме ряда, откуда следует тождество Эйлера:

.

Так как при
ряд справа расходится (гармонический ряд), то из тождества Эйлера следует теорема Евклида.

Русский математик П.Л. Чебышев (1821–1894) вывел формулу, определяющую пределы, в которых заключено число простых чисел
, не превосходящихX :

,

где
,
.

Числа Фибоначчи – на Forex являются математической взаимосвязью и фундаментом для различных методов и стратегий технического анализа на Forex-e. Данные числа — это основа , и во многих других стратегиях рынка Форекс.

В его же честь, уже чуть позже последовательности таких чисел назвали именем самого основателя — «ряд Фибоначчи ».

С помощью этой книги европейцы познали индо-арабскую последовательность чисел, после чего были вытеснены из использования римские цифры в математике и геометрии. Все работы Леонардо Фибоначчи, принесли огромную пользу в сферу развития физики, математики, астрономии и . Сама уникальная формула Фибоначчи, удивительно проста: 1, 2, 3, 5, 8 (и так дальше до бесконечности).

Числовой ряд Фибоначчи имеет очень необычные особенности, а именно, каждое число во взаимосвязи с предыдущим. Итог сложенных двух соседних чисел Фибоначчи, дает в результате число, следующее за первыми двумя. В пример, можно привести следующее: 2 + 2 = 4. Соотношение любого числа к предыдущему числу имеет значение близкое к золотой середине 1, 618. К примеру: 13: 8 = 1, 625; или же 21: 13 = 1, 615; и так далее.
Также рассмотрим иной пример последовательного ряда Леонардо Фибоначчи:

Обратите внимание, как соотношение чисел колеблется вокруг значения 0,618!

На самом деле, сам Леонардо Фибоначчи не считается первым открывателем этого числового ряда. Поскольку следы этой математической связи были обнаружены в музыке, биологии и архитектуре. Даже расположение планет и вся солнечная система основана на этих правилах.

Числа Фибоначчи использовали в строительстве греки при возведении Парфенона, а египтяне при построении известной пирамиды в «Гизе». Уникальные свойства «числовой середины» также были известны величайшим ученым древности как Платону, Пифагору, Архимеду и Леонардо да Винчи.

Удивительная числовая закономерность Фибоначчи

Коэффициент чисел Леонардо Фибоначчи и % отношения уровня коррекции.

Как правило, коррекция постоянно состоит из 3 скачков…

Обычная коррекция подразделяется на 2 вида:

  • это зигзаг 5, 3, 5,
  • а также плоская волна 3, 3, 5.

На четвертой, обычно формируются треугольники, которые постоянно предшествуют последней образовавшейся волне. Эта формация также может быть корректирующей волной В.

Всякая волна подразделяется на более маленькие и является составляющей более длинной.

Бывает так, что одна импульсная волна растягивается, а другие две как правило, должны быть одинаковыми по размеру и времени формирования.

Коэффициенты чисел Фибоначчи и отношения размеров коррекции, которые выведены с помощью этих чисел, применяются для нахождения .

Взаимосвязь размера коррекции к предшествующему движению тренда, обычно равно: 62, 50, 38 процентам.

Метод чередования гласит: не следует дожидаться одного и того же проявления динамики цены 2 раза подряд.

Активный бычий рынок не может упасть ниже, чем начало предшествующей 4 волны.

Кроме того, 4 волна не должна пересекаться с первой.

Главными критериями теории Элиота выступают:

1) форма волны;
2) соотношение их длины;
3) период их развития.

Помимо этого, как мы уже упоминали, на последовательности выведенной Леонардо Фибоначчи, основывается еще много , которые обязательно будут затронуты в материалах этого сайта.

Последовательность чисел Фибоначчи . Вы впервые слышите об этом и даже не предполагаете, из какой это области знаний? Оказывается, закономерность явлений природы, строение и многообразие живых организмов на нашей планете, всё, что нас окружает, поражая воображение своей гармонией и упорядоченностью, законы мироздания, движение человеческой мысли и достижения науки – всё это объясняет суммационная последовательность Фибоначчи .

Извечное стремление человека познать себя и окружающий мир двигало науку вперёд.

Одним из наиболее значимых достижений в математике является введение арабских цифр вместо римских. Оно принадлежит одному из самых замечательных ученых двенадцатого столетия Фибоначчи (1175 г.). Его именем было названо ещё одно сделанное им открытие – суммационную последовательность: 1,1,2,3,5,8,13,21,34,55,89,144,… Это – так называемые числа Фибоначчи .

Эта закономерность в математике интересовала ещё одного ученого средневековья – Фому Аквинского. Движимый желанием «алгеброй гармонию измерить», учёный сделал вывод о прямой связи математики и красоты. Эстетические чувства, возникающие при созерцании гармоничных, пропорционально созданных природой объектов, Фома Аквинский объяснял тем же принципом суммационной последовательности.

Этот принцип поясняет, что начиная с 1,1, следующим числом будет сумма двух предыдущих чисел. Эта закономерность имеет большое значение.Это последовательность все медленнее и медленнее – асимптотически – приближается к некоему постоянному отношению. Однако отношение это является иррациональным, то есть имеет в дробной части бесконечную и непредсказуемую последовательность цифр. Точное его выражение невозможно. Разделив любой член последовательности Фибоначчи на член, предшествующий ему, мы получим величину, которая колеблется возле значения 1.61803398875… (иррациональное), которая будет то не достигать, то превосходить его всякий раз. Даже Вечности не хватит для того, чтобы точно определить это соотношение. Для краткости мы будем использовать его в виде 1.618.

Средневековый математик Лука Пачиоли назвал это соотношение Божественной пропорцией. Кеплеpом суммационная последовательность названа “одним из сокровищ геометрии”. В современной науке суммационная последовательность Фибоначчи имеет несколько названий, не менее поэтичных: Отношение вертящихся квадратов, Золотое среднее, Золотое сечение. В математике его обозначают греческой буквой фи (Ф=1,618).

Асимптотический характер последовательности, ее колебания возле иррационального числа Фибоначчи, имеющие свойство затухать, станут понятнее, если рассмотреть соотношения первых членов этой последовательности. В примере ниже мы рассмотрим числа Фибоначчи приведем отношение второго к первому члену, третьего ко второму и так далее:
1:1 = 1.0000, это меньше фи на 0.6180
2:1 = 2.0000, это больше фи на 0.3820
3:2 = 1.5000, это меньше фи на 0.1180
5:3 = 1.6667, это больше фи на 0.0486
8:5 = 1.6000, это меньше фи на 0.0180
Двигаясь дальше по последовательности Фибоначчи, каждый ее новый член разделит следующий, все более и более приближаясь к недостижимому числу Ф.

Впоследствии мы увидим, что некоторые числа Фибоначчи , составляющие его суммационную последовательность, видны в динамике цен на различные товары; среди методов технического анализа Форекс используются уровни Фибоначчи . Колебания отношений возле 1.615 на ту или иную величину могут быть обнаружены в , в ней они фигурируют в Правиле чередования. Подсознательно каждый человек ищет пресловутую Божественную пропорцию, которая необходима для удовлетворения стремления к комфорту.

Если мы разделим любой член последовательности Фибоначчи на член, следующий за ним, мы получим обратную к 1.618 величину, то есть 1:1.618. Это тоже достаточно необычное явление, пожалуй, даже замечательное. Исходное соотношение является бесконечной дробью, следовательно, и данное соотношение тоже должно быть бесконечным.

Другой немаловажный факт заключается в следующем. Квадрат любого члена последовательности Фибоначчи равняется числу, которое стоит перед ним в последовательности, умноженному на то число, что идет следом за ним, плюс или минус.
5 2 = (3 x 8) + 1
8 2 = (5 x 13) – 1
13 2 = (8 x 21) + 1
Плюс и минус всегда чередуются, и в этом заключается проявление части Волновой Теории Эллиотта, которая называется Правилом чередования. Это правило гласит: сложные волны коррективного характера перемежаются с простыми, сильные волны импульсного характера – со слабыми волнами коррективного характера, и так далее.

Проявления Божественной пропорции в природе

Обнаруженная математическая последовательность позволяет вычислить бесконечное число постоянных величин. Члены этой последовательности всегда будут проявляться в нескончаемом количестве сочетаний.
С помощью установленной закономерности даётся математическое толкование природных явлений. В этой связи, открытию математической последовательности принадлежит одно из самых значительных мест в историческом знании.
Мы можем сослаться на целый ряд интересных теорий, выведенных на основе математической последовательности.

Пирамида в Гизе

Конструкция пирамиды основана на пропорции Ф=1,618. Это открытие было сделано после многочисленных попыток разгадать секреты этой пирамиды. Сама пирамида в Гизе представляется неким посланием потомкам, с тем, чтобы передать определенные знания законов математической последовательности. Во времена возведения пирамиды ее строители не располагали достаточными возможностями для выражения известных им закономерностей. В ту пору не существовала письменность, не использовались ещё и иероглифы. Однако создателям пирамиды удалось с помощью геометрической пропорции своего творения передать свои знания математической закономерности будущим поколениям.

Храмовые жрецы передали Геродоту секрет пирамиды в Гизе. Она выстроена таким образом, что площадь каждой грани равняется квадрату высоты этой грани.
Площадь тpеугольника: 356 x 440 / 2 = 78320
Площадь квадpата: 280 x 280 = 78400
Грань пирамиды в Гизе имеет длину 783.3 фута (238.7 м), ее высота составляет 484.4 фута (147.6 м). Разделив длину грани на высоту, вы придем к соотношению Ф=1.618. Высота 484.4 фута соответствует 5813 дюймам (5-8-13), а это не что иное, как числа последовательности Фибоначчи. Все эти наблюдения приводят нас к выводу, что вся конструкция пирамиды базируется на пропорции Ф=1,618.
– это числа из последовательности Фибоначчи. Эти интересные наблюдения подсказывают, что конструкция пирамиды основана на пропорции Ф=1,618.
Эти сведения дают основание полагать о высоком развитии в те времена знаний в области математики и астрологии. В строгом соответствии с числом 1.618 возведено это величайшее творение не только рук человека, но и его разума. Сами внутренние и внешние пропорции пирамиды, соблюдённые в строгом соответствии с законом Золотого сечения являются посланием нам, потомкам, из глубины веков величайшего знания.

Мексиканские пирамиды

Поражает воображение тот факт, что пирамиды в Мексике построены по такому же принципу. Невольно возникает предположение о строительстве мексиканских пирамид в одно время с египетскими, к тому же строители обладали знаниями о математическом законе Золотого сечения.
Поперечное сечение пирамиды обнаруживает форму лестницы. В пеpвом её яpусе 16 ступеней, второй содержит 42 ступени, третий – 68 ступеней. Числа базируются на последовательности Фибначчи по следующей схеме:
16 x 1.618 = 26
16 + 26 = 42
26 x 1.618 = 42
42 + 26 = 68
Число Ф = 1.618 лежит в основе пропорций мексиканской пиpамиды. (

Числа Фибоначчи... в природе и жизни

Леонардо Фибоначчи – один из величайших математиков Средневековья. В одном и своих трудов “Книга вычислений” Фибоначчи описал индо-арабскую систему исчисления и преимущества ее использования перед римской.

Определение
Числа Фибоначчи или Последовательность Фибоначчи – числовая последовательность, обладающая рядом свойств. Например, сумма двух соседних чисел последовательности дает значение следующего за ними (например, 1+1=2; 2+3=5 и т.д.), что подтверждает существование так называемых коэффициентов Фибоначчи, т.е. постоянных соотношений.

Последовательность Фибоначчи начинается так: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233…

2.

Полное определение чисел Фибоначчи

3.


Свойства последовательности Фибоначчи

4.

1. Отношение каждого числа к последующему более и более стремится к 0.618 по увеличении порядкового номера. Отношение же каждого числе к предыдущему стремится к 1.618 (обратному к 0.618). Число 0.618 называют(ФИ).

2. При делении каждого числа на следующее за ним, через одно получается число 0.382; наоборот – соответственно 2.618.

3. Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: … 4.235, 2.618, 1.618, 0.618, 0.382, 0.236.

5.


Связь последовательности Фибоначчи и «золотого сечения»

6.

Последовательность Фибоначчм асимптотически (пpиближаясь все медленнее и медленнее) стpемится к некотоpому постоянному соотношению. Однако, это соотношение иppационально, то есть пpедставляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифp в дpобной части. Его невозможно выразить точно.

Если какой-либо член последовательности Фибоначчи pазделить на пpедшествующий ему (напpимеp, 13:8), pезультатом будет величина, колеблющаяся около иppационального значения 1.61803398875… и чеpез pаз то пpевосходящая, то не достигающая его. Hо даже затpатив на это Вечность, невозможно узнать сотношение точно, до последней десятичной цифpы. Kpаткости pади, мы будем пpиводить его в виде 1.618. Особые названия этому соотношению начали давать еще до того, как Лука Пачиоли (сpедневековый математик) назвал его Божественной пpопоpцией. Cpеди его совpеменных названий есть такие, как Золотое сечение, Золотое сpеднее и oтношение веpтящихся квадpатов. Kеплеp назвал это соотношение одним из «сокpовищ геометpии». В алгебpе общепpинято его обозначение гpеческой буквой фи

Представим золотое сечение на примере отрезка.

Рассмотрим отрезок с концами A и B. Пусть точка С делит отрезок AB так что,

AC/CB = CB/AB или

AB/CB = CB/AC.

Представить это можно примерно так: A-–C--–B

7.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

8.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью 0,618…, если AB принять за единицу, AC = 0,382.. Kак мы уже знаем числа 0.618 и 0.382 являются коэффициентами последовательности Фибоначчи.

9.

Пропорции Фибоначчи и золотого сечения в природе и истории

10.


Важно отметить, что Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи. Просто удивительно, сколько постоянных можно вычислить пpи помощи последовательности Фибоначчи, и как ее члены проявляются в огромном количестве сочетаний. Однако не будет преувеличением сказать, что это не просто игра с числами, а самое важное математическое выражение природных явлений из всех когда-либо открытых.

11.

Пpиводимые ниже примеры показывают некоторые интересные приложения этой математической последовательности.

12.

1. Pаковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Форма спирально завитой раковины привлекла внимание Архимеда. Дело в том, что отношение измерений завитков раковины постоянно и равно 1.618. Архимед изучал спираль раковин и вывел уравнение спирали. Cпираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.

2. Растения и животные. Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Cпираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Cовместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Cпиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНK закручена двойной спиралью. Гете называл спираль «кривой жизни».

Cреди придорожных трав растет ничем не примечательное растение - цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.

Ящерица живородящая. В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции – длина ее хвоста так относится к длине остального тела, как 62 к 38.

И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы – симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста. Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.

Пьер Kюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды. Закономерности золотой симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

3. Космос. Из истории астрономии известно, что И. Тициус, немецкий астроном XVIII в., с помощью этого ряда (Фибоначчи) нашел закономерность и порядок в расстояниях между планетами солнечной системы

Однако один случай, который, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Cосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов. Произошло это после смерти Тициуса в начале XIX в.

Pяд Фибоначчи используют широко: с его помощью представляют архитектонику и живых существ, и рукотворных сооружений, и строение Галактик. Эти факты – свидетельства независимости числового ряда от условий его проявления, что является одним из признаков его универсальности.

4. Пирамиды. Многие пытались разгадать секреты пирамиды в Гизе. В отличие от других египетских пирамид это не гробница, а скоpее неразрешимая головоломка из числовых комбинаций. Замечательные изобpетательность, мастерство, время и труд аpхитектоpов пирамиды, использованные ими пpи возведении вечного символа, указывают на чрезвычайную важность послания, которое они хотели передать будущим поколениям. Их эпоха была дописьменной, доиероглифической и символы были единственным средством записи открытий. Kлюч к геометро-математическому секрету пирамиды в Гизе, так долго бывшему для человечества загадкой, в действительности был передан Геродоту храмовыми жрецами, сообщившими ему, что пирамида построена так, чтобы площадь каждой из ее граней была равна квадрату ее высоты.

Площадь тpеугольника

356 x 440 / 2 = 78320

Площадь квадpата

280 x 280 = 78400

Длина ребра основания пирамиды в Гизе равна 783.3 фута (238.7 м), высота пирамиды -484.4 фута (147.6 м). Длина ребра основания, деленная на высоту, приводит к соотношению Ф=1.618. Высота 484.4 фута соответствует 5813 дюймам (5-8-13) – это числа из последовательности Фибоначчи. Эти интересные наблюдения подсказывают, что конструкция пирамиды основана на пропорции Ф=1,618. Некоторые современные ученые склоняются к интерпретации, что древние египтяне построили ее с единственной целью – передать знания, которые они хотели сохранить для грядущих поколений. Интенсивные исследования пирамиды в Гизе показали, сколь обширными были в те времена познания в математике и астрологии. Во всех внутренних и внешних пропорциях пирамиды число 1.618 играет центральную роль.

Пирамиды в Мексике. Hе только египетские пиpамиды постpоены в соответствии с совеpшенными пpопоpциями золотого сечения, то же самое явление обнаpужено и у мексиканских пиpамид. Возникает мысль, что как египетские, так и мексиканские пиpамиды были возведены пpиблизительно в одно вpемя людьми общего происхождения.