Что остается на месте вспышки сверхновой. Сверхновые звезды. Рождение новых звезд

Тестировал возможности новой камеры, прикрепив ее к 40-сантиметровому телескопу. Для съемки он выбрал спиральную галактику NGC 613, расположенную в 80 млн световых лет в созвездии Скульптора, крупном созвездии в южном полушарии. Бузо на протяжении полутора часов снимал галактику с 20-секундной выдержкой, чтобы избежать засвечивания огнями города. В течение первых 20 минут фотографии выглядели одинаково.

А затем Бузо заметил яркую точку в конце одного из рукавов галактики и понял, что происходит что-то необыкновенное. Но не смог определить, что именно, и обратился за помощью к профессионалам.

Ознакомившись со снимками, астроном Мелина Берстен и ее коллеги из Института астрофизики в Ла-Плате поняли, что

Босо удалось зафиксировать редчайшее событие — вспышку сверхновой.

При вспышке сверхновой светимость звезды резко увеличивается на четыре-восемь порядков, а затем вспышка медленно затухает. Взрыв сопровождается выбросом значительной массы вещества из внешней оболочки звезды в межзвездное пространство. Как правило, сверхновые звезды наблюдаются постфактум, то есть когда событие уже произошло и его излучение достигло Земли. Взрывную волну, которую зафиксировал на камеру Бузо, можно наблюдать лишь в первые несколько часов. Заснять взрыв сложно, так как невозможно предсказать, когда он произойдет. До сих пор это никому не удавалось. По словам Берстен, шанс такого открытия — один на 10, если не на 100 миллионов.

Однако Бузо удалось зафиксировать самое начало этого процесса.

Victor Buso/Gaston Folatelli

«Фактически, некоторые исследователи уже стали задаваться вопросом, насколько верны теоретические модели взрыва сверхновой, — объясняет Берстен, возглавившая исследование. —

Наблюдения Бузо чрезвычайно ценны, даже в лотерею проще выиграть, чем сделать что-то подобное».

«Это как выиграть в космическую лотерею», — подтверждает астрофизик Алексей Филиппенко из Калифорнийского университета в Беркли, участвовавший в наблюдениях за сверхновой после взрыва. Данные о наблюдениях были опубликованы 21 февраля этого года в журнале Nature , ученые упомянули Бузо в числе соавторов.

«Данные Бузо исключительны, — отмечает Филиппенко. — Это великолепный пример партнерства любителей и профессиональных астрономов».

В течение двух месяцев после открытия сверхновой, получившей название SN 2016gkg, астрономы наблюдали за ней с помощью телескопов обсерватории Кека и Ликской обсерватории. Основываясь на открытии и дальнейших наблюдениях, Берстен и ее коллеги определили, что сверхновая была частью двойной звездной системы, которая потеряла внешние слои газа, сохранив лишь ядро, состоящее преимущественно из гелия. Спектральные данные показали, что это сверхновая типа IIb — массивная звезда, которая уже потеряла большую часть своей массы до взрыва.

Команда подсчитала, что масса SN 2016gkg была примерно в 20 раз больше массы Солнца, но к моменту взрыва звезда потеряла 3/4 массы. Сейчас, когда SN 2016gkg стала сверхновой, она уменьшилась до пяти солнечных масс.

Долгожданные визуальные данные помогут астрономам получить больше информации о структуре звезды непосредственно перед ее взрывом, а также информацию о самом взрыве.

«Профессиональные астрономы давно ждали чего-то подобного, — говорит Филиппенко. — Наблюдения за звездами в первые моменты взрыва предоставляют информацию, которая не может быть напрямую получена каким-либо другим способом».

В ноябре 2017 года «Газета.Ru» рассказывала о еще одном необычном открытии —

Которая пережила уже несколько взрывов и отказывается затухать.

Сверхновую iPTF14hls астрономы обнаружили в ходе астрономического обзора Palomar Transient Factory в сентябре 2014 года. Спустя несколько месяцев астрономы из обсерватории Лас Кумбрес в США заметили, что звезда перестала затухать и начала становиться ярче. Пересмотрев архивные данные, исследователи выяснили, что сверхновая в этом же месте была обнаружена в 1954 году. Каким-то образом она пережила взрыв и продолжила сиять, а затем снова взорвалась 50 лет спустя.

По подсчетам исследователей, до взрыва масса звезды в 50 раз превышала массу Солнца. Масштабы взрыва звезды, возможно, связаны с ее необычным поведением, предполагают они. Сверхновая iPTF14hls может оказаться первым обнаруженным примером пульсирующей парно-нестабильной сверхновой.

«Согласно этой теории, возможно, звезда была настолько массивной и горячей, что при взрыве породила антивещество в своем ядре. Это могло стать причиной того, что звезда была нестабильной и за годы существования пережила несколько вспышек, — предполагают исследователи. — Такие взрывы, как считается, были возможны только на раннем этапе существования Вселенной и сегодня уже не должны происходить. Это все равно, что встретить динозавра».

Может взорваться с энергией в миллиарды солнц, и потом стать снова тусклой только через несколько часов или дней. Некоторые взрываются в струю газа и пыли, другие становятся экзотическими объектами, такими как нейтронные звёзды или .

Астрономы классифицировали сверхновые следующим образом, смотрите в таблице ниже (из Википедии):

Класс/Тип Подкласс Механизм
I
Линии водорода отсутствуют
Сильные линии ионизированного кремния (Si II) на 6150 (Ангстрем) Ia Термоядерный взрыв
Iax
В максимуме блеска имеют меньшую светимость и меньшую же в сравнении Ia
Линии кремния слабые или отсутствуют Ib
Присутствуют линии гелия (He I).
Гравитационный коллапс
Ic
Линии гелия слабые или отсутствуют
II
Присутствуют линии водорода
II-P/L/N
Спектр постоянен
II-P/L
Нет узких линий
II-P
Кривая блеска имеет плато
II-L
Звёздная величина линейно уменьшается со временем
IIn
Присутствуют узкие линии
IIb
Спектр со временем меняется и становится похожим на спектр Ib.

Сверхновая типа I происходит в двойных системах, где одна звезда перетягивает массу из второй звезды, пока не достигнет определённого количества массы. Это приводит её к взрыву в виде вспышки сверхновой. Сверхновая типа II - это взрыв массивной звезды, которая достигла конца своей жизни.

Все элементы тяжелее железа были созданы во вспышках сверхновых. Когда массивная звезда выработает водородное топливо, она начнёт перерабатывать всё более тяжёлые элементы. Гелий в углерод и кислород. А затем кислород в ещё более тяжёлые элементы. Она идёт вверх по периодической таблице, производя более тяжёлые элементы, пока не достигнет железа. Как только звезда достигнет железа, она больше не сможет извлекать энергию из термоядерного процесса. Ядро коллапсирует в чёрную дыру, и вещество вокруг неё сплавится вместе в элементы тяжелее железа. Если вы носите золотые украшения, золото было создано в сверхновой.

Остаток сверхновой SNR 0519-69.0. Снимок получен путём совмещения двух изображений от космических телескопов "Хаббл" и "Чандра".

В 1054 году китайские астрономы увидели вспышку сверхновой, которая была настолько яркая, что её было видно днём. Этот взрыв газа и пыли теперь мы знаем как Крабовидную туманность. А в современном мире мощная вспышка сверхновой произошла в 1987 году, когда взорвалась звезда в Большом Магеллановом Облаке.

Астрономы используют сверхновые типа I, чтобы судить о расстояниях во Вселенной. Из-за того, что они всегда взрываются с выбросом примерно одинакового количества энергии. Когда белый карлик накапливает 1,4 массы Солнца, он не может сдерживать эту массу и коллапсирует. Этот предел массы называют пределом Чандрасекара. Когда астроном видит вспышку сверхновой типа I, он знает, насколько она яркая, и поэтому может измерить то, как далеко она находится.

Название прочитанной вами статьи "Сверхновая звезда или вспышка сверхновой" .

Еще несколько веков назад астрономы заметили, как блеск некоторых звезд в галактике неожиданно увеличивался более чем в тысячу раз. Редкое явление многократного увеличение свечения космического объекта ученые обозначили, как рождение сверхновой звезды. Это в некотором роде космический нонсенс, потому что в этот момент звезда не рождается, а прекращает свое существование.

Вспышка сверхновой звезды - это, по сути, взрыв звезды, сопровождающийся выделением колоссального количества энергии ~10 50 эрг. Яркость свечения сверхновой, которая становится видна в любой точке Вселенной, возрастает течение нескольких суток. При этом каждую секунду выделяется такое количество энергии, которое может выработать Солнце за все время своего существования.

Взрыв сверхновой звезды как следствие эволюции космических объектов

Ученые-астрономы объясняют это явление эволюционными процессами, миллионы лет происходящими со всеми космическими объектами. Чтобы представить себе процесс появления сверхновой, нужно понять строение звезды (рисунок ниже) .

Звезда - это огромный объект, обладающий колоссальной массой и, следовательно, такой же гравитацией. У звезды есть маленькое ядро, окруженное внешней оболочкой из газов, составляющих основную массу звезды. Гравитационные силы давят на оболочку и ядро, сжимая их с такой силой, что газовая оболочка раскаляется и, расширяясь, начинает давить изнутри, компенсируя силу гравитации. Паритет двух сил обусловливает стабильность звезды.

Под действием огромных температур в ядре начинается термоядерная реакция, превращающая водород в гелий. Выделяется еще больше тепла, излучение которого внутри звезды возрастает, но пока еще сдерживается гравитацией. А дальше начинается настоящая космическая алхимия: запасы водорода истощаются, гелий начинает превращаться в углерод, углерод - в кислород, кислород - в магний…Так посредством термоядерной реакции происходит синтез все более тяжелых элементов.

До момента появления железа все реакции идут с выделением тепла, но как только железо начинает перерождаться в следующие за ним элементы, реакция из экзотермической переходит в эндотермическую, то есть тепло перестает выделяться и начинает расходоваться. Баланс сил гравитации и теплового излучения нарушается, ядро сжимается в тысячи раз, и к центру звезды устремляются все внешние слои оболочки. Врезаясь в ядро со скоростью света, они отскакивают обратно, сталкиваясь друг с другом. Происходит взрыв внешних слоев, и вещество, из которого состоит звезда, разлетается со скоростью в несколько тысяч километров в секунду.

Процесс сопровождается такой яркой вспышкой, что ее можно увидеть даже невооруженным глазом, если сверхновая загорелась в ближайшей галактике. Затем свечение начинает угасать, и на месте взрыва образуется…А что же остается после взрыва сверхновой? Существует несколько вариантов развития событий: во-первых, остатком сверхновой может быть ядро из нейтронов, которое ученые называют нейтронной звездой, во-вторых, черная дыра, в-третьих, газовая туманность.

Одно из поразительнейших явлений природы - вспыш­ки сверхновых звезд. Это событие крайне редкое в жизни, звезд. В Галактике свыше 100 миллиардов звезд, однако за время существования телескопической астрономии в нашей звездной системе не наблюдалось ни одной вспыш­ки сверхновой. Невооруженный глаз человека видел, как сейчас считают, семь вспышек сверхновых, отмеченных в китайских, японских, корейских, арабских и европей­ских летописях. Их список дан в таблице.

Из таблицы видно, что сверхновая 393 года в l00 раз, а сверхновая 185 года в 40 раз в максимуме блеска были ярче Венеры, видимая звездная величина которой в мак­симуме блеска равна -4 m . Галактические широты вспы­шек показывают, что все они происходили поблизости от плоскости Симметрии Галактики. Моменты вспышек, оче­видно, совершенно случайны. В двух случаях промежут­ки между ними меньше 50 лет, но есть и промежуток в 6 столетий. Последняя вспышка сверхновой в нашей Галактике наблюдалась в 1604 г., за 5 лет до того как Галилей впервые навел телескоп на небо. Неверно было бы считать, что после этого в Галактике не было вспышек сверхновых. Можно быть уверенным, что за прошедшие почти 4 столетия они и не один раз происходили в да­леких областях Галактики близ ее плоскости, скрытые от нас непроницаемым слоем поглощающей свет пылевой материей.

В некотором отношении изучение свойств имевших место в прошлом семи вспышек сверхновых в нашей Галактике производится и сейчас. В результате вспышки в окружающем звезду объеме образовывалась газовая туманность - реликт сверхновой. Эти туманности продол­жают в наше время посылать по всем направлениям ра­диоизлучение, и благодаря этому их возможно исследо­вать. .В случае же вспышки сверхновой 1054 г. ее ре­зультатом является красивая Крабовидная туманность, хорошо наблюдаемая и в оптические телескопы. Оптиче­ски наблюдаемая туманность есть и на месте вспышки сверхновой 1604 г.

Однако наибольший интерес представляют наблюде­ния сверхновых в моменты быстрого изменения их бле­ска, в особенности около максимума блеска. Поэтому вспышки сверхновых, происшедшие в Галактике, не дают достаточно материала для изучения природы этого ред­костного явления. Возможно даже, что если бы их на­блюдали только в Галактике, то не было бы оснований для выделения их в особый класс вспыхивающих звезд, отличающихся от обыкновенных новых.

К счастью, сверхновые вспыхивают ив других галак­тиках. В максимуме блеска их светимость колоссальна, абсолютная звездная величина заключается в пределах от -12 m до -18m. Если допустить, что вспышка сверх­новой может наблюдаться, когда ее видимая звездная величина в максимуме блеска не превосходит +16 m , то это означает, что сверхновая с абсолютной звездной ве­личиной -16 m будет обнаружена на расстоянии до 25 Мпс. Это огромнейшее расстояние. Десятки тысяч галактик расположены к нам ближе 25 Мпс. Поэтому, наблюдая другие галактики, мы в десятки тысяч раз увеличиваем возможность наблюдать сверхновые звезды.

Первая вспышка сверхновой в другой галактике была зарегистрирована в 1885 г. Она произошла в туманности Андромеды. В максимуме блеска сверхновая имела види­мую звездную величину +7 m ,2 и могла наблюдаться в би­нокль. Можно подсчитать, зная расстояние, что ее абсолютная звездная величина была близка к -17 m . Следую­щие вспышки наблюдались в 1919 г. в NGC 4486 и в 1926 г. в NGC 4303.

С 1933 г. систематический поиск сверхновых предпринял Цвикки. За период до 1942 г. было обнаружено 19 вспышек. Однако вторая мировая война прервала ра­боту. Только с 1954 г. возобновился систематический по­иск. Особый прогресс был достигнут после того как в 1959 г. для этих целей стал использоваться 48-дюймовый (120 см) телескоп Шмидта обсерватории Маунт Паломар. Это мощный телескоп, обладающий важной особен­ностью,-видимая в поле его зрения площадь неба зна­чительно больше, чем у обычных телескопов.

Если до 1959 г. число открываемых сверхновых в год колебалось от двух до четырех, то в 1959 г. было обнару­жено 5 вспышек, в 1960 -18, в 1961 - 22, в 1962 -16, в 1963-22, в 1964-11, в 1965 - 14 и в 1966-12. С 1961 г. поиски сверхновых в других галактиках ведут 11стран, в том числе Советский Союз. Общее число всех зарегистрированных сверхновых в других галактиках на 1 сентября 1978 г. составило 456.

Для открытия сверхновой фотографируют последова­тельно участки неба и сравнивают снимки со снимками, сделанными в предыдущие дни. Если в какой-нибудь галактике появилась яркая точка, которой до этого не было, значит, вспыхнула сверхновая. Тогда эта галактика подвергается многократному фотографированию через оп­ределенные промежутки времени. На сверхновую направ­ляют также щель спектрографа, получают ее спектры. Обычно спектры можно получать только в моменты, близ­кие к максимуму блеска; после этого у сверхновой не­достаточно света, чтобы спектр на пластинке проявился. Расширение линий в спектрах показывает всегда, что сверхновые выбрасывают во все стороны газовую мате­рию, которая движется со скоростью в несколько тысяч километров в секунду.

Иногда блеск сверхновой в момент максимума бывает сравним с полным блеском той галактики, в которой про­изошла вспышка. Чаще он уступает полному блеску га­лактики, но ненамного. Только в случае сверхгигантских галактик разница блеска значительна.

Число галактик, входящих в область наблюдений и достаточно близких, чтобы происшедшая вспышка сверх­новой могла быть замечена, можно оценить в 5000.

Среднее число обнаруживаемых ежегодно вспышек за последние десять лет, когда можно считать, что число пропускаемых вспышек незначительно, равно приблизи­тельно 25. В сверхгигантских галактиках они происходят чаще, чем в гигантских, в гигантских чаще, чем в кар­ликовых. Приблизительно выполняется условие, согласно которому частота вспышек пропорциональна количеству материи в галактике. Но в спиральных галактиках они происходят чаще, чем в эллиптических, а среди спиралей они чаще всего случаются в тех, которые относятся к подтипу Sс, и реже всего в тех, которые относятся к под­типу Sа. Приблизительная оценка частоты вспышек сверхновых в гигантских галактиках равна одной за 50 лет.

Когда же, наконец, произойдет очередная вспышка сверхновой внутри нашей Галактики? Означает ли от­сутствие вспышек в течение 360 лет, что теперь они на­зрели и вероятность появления сверхновых в ближайшие годы возросла? Нет, не означает. Во-первых, мы не мо­жем утверждать, что в нашей системе за последние три c половиной столетия действительно не было сверхновых. Вспышки происходят близ галактической плоскости и да­лекие из них не могут наблюдаться вследствие сильного, поглощения света. Не заметить, пропустить явление сверх­новой в нашей Галактике легче, чем в любой другой галактике, если только последняя наблюдается не с ребра.

Но даже если длительное отсутствие вспышек реально, оно не увеличивает вероятности появления сверхновых в ближайшее время. Такова закономерность появления! случайного события тогда, когда оно может произой­ти с, ничтожно малой вероятностью у каждого из членов коллектива, а членов в коллективе очень много, на­пример, как звезд в Галактике. Поэтому, несмотря на то, что последняя вспышка сверхновой в нашей Галактике; наблюдалась в 1604 г., вероятность появления сверхновой в текущем году такая же малая, как и в 1605 г., который следовал за 1604 г.

Об этом стоит пожалеть. Сравнительно близкая вспышка сверхновой - это очень интересное зрелище, и она была бы очень ценным объектом исследования. Ее можно было бы заметить раньше, до достижения максимума] блеска, и изучить процесс нарастания яркости сверхновой, ускользающий при наблюдениях вспышек в других| галактиках. Наблюдения можно было бы вести долгой время после ослабления блеска, чтобы узнать, какова окончательная судьба сверхновой - вопрос, не разреши­мый для сверхновых в других галактиках. Значительная видимая яркость сверхновой позволила бы получить спектр с большим числом подробностей и произвести де­тальное исследование.

Но слишком близкая вспышка сверхновой может таить и опасность. Если бы эта катастрофа произошла, на­пример, с нашим ближайшим соседом - альфа Центавра, то в максимуме блеска сверхновая светила бы как 500 лун. При очень высокой температуре ее поверхности ультра­фиолетовое и еще более коротковолновое излучение, до­стигающее Земли, могло бы представить опасность для жизни на нашей планете.
Приглашаем Вас обсудить данную публикацию на нашем .

Что вы знаете о сверхновых звездах? Наверняка скажете, что сверхновая звезда является грандиозным взрывом звезды, на месте которой остаётся нейтронная звезда или чёрная дыра.

Однако на самом деле не все сверхновые являются конечной стадией жизни массивных звезд. Под современную классификацию сверхновых взрывов, помимо взрывов сверхгигантов, входят также некоторые другие явления.

Новые и сверхновые

Термин «сверхновая» перекочевал от термина «новая звезда». «Новыми» называли звезды, которые возникали на небосклоне практически на пустом месте, после чего постепенно угасали. Первые «новые» известны ещё по китайским летописям, датируемым вплоть до второго тысячелетия до нашей эры. Что интересно, среди этих новых нередко встречались сверхновые. К примеру, именно сверхновую в 1571 году наблюдал Тихо Браге, который впоследствии ввёл термин «новая звезда». Сейчас нам известно, что в обоих случаях речь не идёт о рождении новых светил в буквальном смысле.

Новые и сверхновые звезды обозначают резкое увеличение яркости какой-либо звезды или группы звезд. Как правило, раньше люди не имели возможности наблюдать звёзды, которые порождали эти вспышки. Это были слишком тусклые объекты для невооруженного глаза или астрономического прибора тех лет. Их наблюдали уже в момент вспышки, что естественно походило на рождение нового светила.

Не смотря на схожесть этих явлений, в наши дни существует резкое различие в их определениях. Пиковая светимость сверхновых звезд в тысячи и сотни тысяч раз больше пиковой светимости новых. Такое расхождение объясняется принципиальным различием природы этих явлений.

Рождение новых звезд

Новые вспышки являются термоядерными взрывами, происходящим в некоторых тесных звездных системах. Такие системы состоят из и более крупной звезды-компаньона (звезды главной последовательности, субгиганта или ). Могучее тяготение белого карлика притягивает вещество из звезды-компаньона, в результате чего вокруг него образуется аккреционный диск. Термоядерные процессы, происходящие в аккреционном диске, временами теряют стабильность и приобретают взрывной характер.

В результате такого взрыва яркость звездной системы увеличивается в тысячи, а то и в сотни тысяч раз. Так происходит рождение новой звезды. Доселе тусклый, а то и невидимый для земного наблюдателя объект приобретает заметную яркость. Как правило, своего пика такая вспышка достигает всего за несколько дней, а затухать может годами. Нередко такие вспышки повторяются у одной и той же системы раз в несколько десятилетий, т.е. являются периодичными. Также вокруг новой звезды наблюдается расширяющаяся газовая оболочка.

Сверхновые взрывы обладают совершенно иной и более разнообразной природой своего происхождения.

Сверхновые принято разделять на два основных класса (I и II). Эти классы можно назвать спектральными, т.к. их отличает присутствие и отсутствие линий водорода в их спектрах. Также эти классы заметно отличаются визуально. Все сверхновые I класса схожи как по мощности взрыва, так и по динамике изменения блеска. Сверхновые же II класса весьма разнообразны в этом плане. Мощность их взрыва и динамика изменения блеска лежит в весьма обширном диапазоне.

Все сверхновые II класса порождаются гравитационным коллапсом в недрах массивных звезд. Другими словами, этот тот самый, знакомый нам, взрыв сверхгигантов. Среди сверхновых первого класса существуют те, механизм взрыва которых скорее схож с взрывом новых звезд.

Смерть сверхгигантов

Сверхновыми становятся звезды, масса которых превышает 8-10 солнечных масс. Ядра таких звезд, исчерпав, водород, переходят к термоядерным реакциям с участием гелия. Исчерпав гелий, ядро переходит к синтезу всё более тяжелых элементов. В недрах звезды создаётся всё больше слоёв, в каждом из которых происходит свой тип термоядерного синтеза. В конечной стадии своей эволюции такая звезда превращается в «слоёный» сверхгигант. В его ядре происходит синтез железа, тогда как ближе к поверхности продолжается синтез гелия из водорода.

Слияние ядер железа и более тяжёлых элементов происходит с поглощением энергии. Поэтому, став железным, ядро сверхгиганта больше не способно выделять энергию для компенсации гравитационных сил. Ядро теряет гидродинамическое равновесие и приступает к беспорядочному сжатию. Остальные слои звезды продолжают поддерживать это равновесие, до тех пор, пока ядро не сожмётся до некого критического размера. Теперь гидродинамическое равновесие теряют остальные слои и звезда в целом. Только в этом случае «побеждает» не сжатие, а энергия, выделившая в ходе коллапса и дальнейших беспорядочных реакций. Происходит сброс внешней оболочки - сверхновый взрыв.

Классовые различия

Различные классы и подклассы сверхновых объясняются тем, какой звезда была до взрыва. К примеру, отсутствие водорода у сверхновых I класса (подкласса Ib, Ic) является следствие того, что водорода не было у самой звезды. Вероятнее всего, часть её внешней оболочки была потеряна в ходе эволюции в тесной двойной системе. Спектр подкласса Ic отличается от Ib отсутствием гелия.

В любом случае сверхновые таких классов происходят у звезд, не имеющих внешней водородно-гелиевой оболочки. Остальные же слои лежат в довольно строгих пределах своего размера и массы. Это объясняется тем, что термоядерные реакции сменяют друг друга с наступлением определенной критической стадии. Поэтому взрывы звезд Ic и Ib класса так похожи. Их пиковая светимость примерно в 1,5 миллиардов раз превышает светимость Солнца. Эту светимость они достигают за 2-3 дня. После этого их яркость в 5-7 раз слабеет за месяц и медленно уменьшается в последующие месяцы.

Звёзды сверхновых II типа обладали водородно-гелиевой оболочкой. В зависимости от массы звезды и других её особенностей это оболочка может иметь различные границы. Отсюда объясняются широкий диапазон в характерах сверхновых. Их яркость может колебаться от десятков миллионов до десятков миллиардов солнечных светимостей (исключая гамма-всплески - см. дальше). А динамика изменения яркость имеет самый различный характер.

Трансформация белого карлика

Особую категорию сверхновых составляет вспышки . Это единственный класс сверхновых звезд, который может происходить в эллиптических галактиках. Такая особенность говорит о том, что эти вспышки не являются продуктом смерти сверхгигантов. Сверхгиганты не доживают до того момента, как их галактики «состарятся», т.е. станут эллиптическими. Также все вспышки этого класса имеют практически одинаковую яркость. Благодаря этому сверхновые Ia типа являются «стандартными свечами» Вселенной.

Они возникают по отличительно иной схеме. Как отмечалось ранее, эти взрывы по своей природе чем-то сходны с новыми взрывами. Одна из схем их возникновения предполагает, что они также зарождаются в тесной системе белого карлика и его звезды-компаньона. Однако, в отличие от новых звезд, здесь происходит детонация иного, более катастрофического типа.

По мере «пожирания» своего компаньона, белый карлик увеличивается в массе до тех пор, пока не достигнет предела Чандрасекара. Этот предел, примерно равный 1,38 солнечной массы, является верхней границы массы белого карлика, после которого он превращается в нейтронную звезду. Такое событие сопровождается термоядерным взрывом с колоссальным выделением энергии, на много порядков превышающим обычный новый взрыв. Практически неизменное значение предела Чандрасекара объясняет столь малое расхождение в яркостях различных вспышек данного подкласса. Эта яркость почти в 6 миллиардов раз превышает солнечную светимость, а динамика её изменения такая же, как у сверхновых Ib, Ic класса.

Гиперновые взрывы

Гиперновыми называют вспышки, энергия которых на несколько порядков превышает энергию типичных сверхновых. То есть, по сути они гиперновые являются очень яркими сверхновыми.

Как правило, гиперновым считается взрыв сверхмассивных звезд, также называемых . Масса таких звезд начинается с 80 нередко превышает теоретический предел 150 солнечных масс. Также существуют версии, что гиперновые звезды могут образовываться в ходе аннигиляции антиматерии, образованию кварковой звезды или же столкновением двух массивных звезд.

Примечательны гиперновые тем, что они являются основной причиной, пожалуй, самых энергоёмких и редчайших событий во Вселенной - гамма-всплесков. Продолжительность гамма всплесков составляет от сотых секунд до нескольких часов. Но чаще всего они длятся 1-2 секунду. За эти секунды они испускают энергию, подобную энергии Солнца за все 10 миллиардов лет её жизни! Природа гамма-всплесков до сих пор по большей части остаётся под вопросом.

Прародители жизни

Несмотря на всю свою катастрофичность, сверхновые по праву можно назвать прародителями жизни во Вселенной. Мощность их взрыва подталкивает межзвездную среду на образования газопылевых облаков и туманностей, в которых впоследствии рождаются звезды. Ещё одна их особенность состоит в том, что сверхновые насыщают межзвездную среду тяжелыми элементами.

Именно сверхновые порождают все химические элементы, что тяжелее железа. Ведь, как отмечалось ранее, синтез таких элементов требует затрат энергии. Только сверхновые способны «зарядить» составные ядра и нейтроны на энергозатратные производство новых элементов. Кинетическая энергия взрыва разносит их по пространству вместе с элементами, образовавшимися в недрах взорвавшейся звезды. В их число входят углерод, азот и кислород и прочие элементы, без которых невозможна органическая жизнь.

Наблюдение за сверхновыми

Сверхновые взрывы являются крайне редкими явлениями. В нашей галактике, содержащей более сотни миллиардов звёзд, происходит всего лишь несколько вспышек за столетие. Согласно летописным и средневековым астрономическим источникам, за последние две тысячи лет были зафиксированы лишь шесть сверхновых, видимых невооруженным глазом. Современным астрономам ни разу не доводилось наблюдать сверхновых в нашей галактике. Наиболее ближайшая произошла в 1987 в Большом Магеллановым Облаке, в одном из спутников Млечного Пути. Каждый год учёные наблюдают до 60 сверхновых, происходящих в других галактиках.

Именно из-за этой редкости сверхновые практически всегда наблюдаются уже в момент вспышки. События, предшествующие ей почти никогда не наблюдались, поэтому природа сверхновых до сих пор во многом остаётся загадочной. Современная наука не способна достаточно точно спрогнозировать сверхновые. Любая звезда-кандидат способна вспыхнуть лишь через миллионы лет. Наиболее интересна в этом плане Бетельгейзе, которая имеет вполне реальную возможность озарить земное небо на нашем веку.

Вселенские вспышки

Гиперновые взрывы случаются ещё реже. В нашей галактике такое событие случаются раз в сотни тысяч лет. Однако, гамма-всплески, порождаемые гиперновыми, наблюдаются почти ежедневно. Они настолько мощны, что регистрируются практически со всех уголков Вселенной.

К примеру, один из гамма-всплесков, расположенных в 7,5 миллиардов световых лет, можно было разглядеть невооружённым глазом. Произойти он в галактике Андромеда, земное небо на пару секунд осветила звезда с яркостью полной луны. Произойти он на другом краю нашей галактики, на фоне Млечного Пути появилось бы второе Солнце! Получается, яркость вспышки в квадриллионы раз ярче Солнца и в миллионы раз ярче нашей Галактики. Учитывая, что галактик во Вселенной миллиарды, неудивительно, почему такие события регистрируются ежедневно.

Влияние на нашу планету

Маловероятно, что сверхновые могут нести угрозу современному человечеству и каким-либо образом повлиять на нашу планету. Даже взрыв Бетельгейзе лишь осветит наше небо на несколько месяцев. Однако, безусловно, они решающим образом влияли на нас в прошлом. Примером тому служит первое из пяти массовых вымираний на Земле, произошедших 440 млн. лет назад. По одной из версий причиной этому вымиранию послужил гамма-вспышка, произошедшая в нашей Галактике.

Более примечательна совсем иная роль сверхновых. Как уже отмечалось, именно сверхновые создают химические элементы, необходимые для появления углеродной жизни. Земная биосфера не была исключением. Солнечная система сформировалось в газовом облаке, которые содержали осколки былых взрывов. Получается, мы все обязаны сверхновым своим появлением.

Более того, сверхновые и в дальнейшем влияли на эволюцию жизни на Земле. Повышая радиационный фон планеты, они заставляли организмы мутировать. Не стоит также забывать про крупные вымирания. Наверняка сверхновые не единожды «вносили коррективы» в земную биосферу. Ведь не будь тех глобальный вымираний, на Земле бы сейчас господствовали совсем другие виды.

Масштабы звездных взрывов

Чтобы наглядно понять, какой энергией обладают сверхновые взрывы, обратимся к уравнению эквивалента массы и энергии. Согласно нему, в каждом грамме материи заключено колоссальное количество энергии. Так 1 грамм вещества эквивалентен взрыву атомной бомбы, взорванной над Хиросимой. Энергия царь-бомбы эквивалента трём килограммам вещества.

Каждую секунду ходе термоядерных процессов в недрах Солнца 764 миллиона тонн водорода превращается в 760 миллион тонн гелия. Т.е. каждую секунду Солнце излучает энергию, эквивалентную 4 млн. тоннам вещества. Лишь одна двухмиллиардная часть всей энергии Солнца доходит до Земли, это эквивалентно двум килограммам массы. Поэтому говорят, что взрыв царь-бомбы можно было наблюдать с Марса. К слову, Солнце доставляет на Землю в несколько сотен раз больше энергии, чем потребляет человечество. То есть, чтобы покрыть годовые энергетические потребности всего современного человечества нужно превращать в энергию всего несколько тонн материи.

Учитывая вышесказанное, представим, что средняя сверхновая в своём пике «сжигает» квадриллионы тон вещества. Это соответствует массе крупного астероида. Полная же энергия сверхновой эквивалентна массе планеты или даже маломассивной звезды. Наконец, гамма-всплеск за секунды, а то и за доли секунды своей жизни, выплёскивает энергию, эквивалентную массе Солнца!

Такие разные сверхновые

Термин «сверхновая» не должен ассоциироваться исключительно с взрывом звёзд. Эти явления, пожалуй, также разнообразны, как разнообразны сами звёзды. Науке только предстоит понять многие их секреты.